본문 바로가기 대메뉴 바로가기
open
Close

Low-dimensional Electron Systems Lab. (LESL)

RESEARCH

RESEARCH

SEMICONDUCTOR MATERIALS PHYSICS
& NANOSTRUCTURE ELECTRON DEVICE APPLICATIONS

- 고이동도 이차원 반도체 신소재의 전기적 특성/물리값 측정:

전자 수송 측정 기술을 이용한 반도체 재료의 에너지-운동량 정보 측정
이차원 재료 기반의 나노 구조내 전자 상호 작용 및 양자 현상 연구

- 이차원 반데르발스 재료 기반 적층시스템에서의 종적방향 전하 이동 연구:

두 층간의 터널링 특성, 에너지 혹은 운동량 전달 등 상호 관계 연구
종적방향 ballistic transport 특성 연구
Moire 패턴 초격자에 의한 밴드 구조 및 전기적 특성 제어 연구

- Nanostructure Electronic/Optoelectronic Device Applications:

Multi-Valued Logic Devices, Negative Differential Resistors
IR, Vis Light Detectors
High-Performance Field Effect Transistors, Low Power Tunneling Transistors
p-n Diodes, Inverters, Spin Devices, Contact Property Optimization

TRANSPORT SPECTROSCOPY:

We have a special technique to measure electron energy (Fermi energy) as a function of electron density. The measured electron energy vs density data provide band gap, effective mass, and Fermi velocity, which are important fundamental electronic properties and critical to design of diverse electronic and optical applications. We also do manipulating electronic structure of materials for practical purposes, and probing the reconstructed electronic structure.

NOVEL QUANTUM STATES:

We are interested in various quantum phenomena such as quantum Hall effect and topological/quantum spin Hall states in two-dimensional materials. In such nanoscale materials due to the reduced dimensionality quantum effect can be pronounced. Using our non-local Fermi energy measurement technique we are capable of direct probing of energy of such quantum states. We design novel condensed matter systems, study new quantum phenomena, and explore practical nanoelectronics using emerging nanoscale materials and physics. This research includes developing new method of nano fabrication and precise characterization techniques.

QUANTUM TUNNELING and TUNNELING ELECTRONICS:

Two-dimensional (van der Waals) materials allow us to develop atomically thin nano devices, in contrast to conventional bulk materials. There are diverse choices of two-dimensional materials and their combinations, which can offer multiple functionalities. Double layer electron systems separated by an atomically thin barrier can show a variety of interesting physical phenomena including resonant quantum tunneling and unique interlayer interaction effects. We are developing new types of low-power high-speed nanoscale tunneling devices.

ELECTRON OPTICS:

In high quality graphene electrons are able to move tens of micrometers coherently without any scattering, phenomenon called ballistic transport. Electrons, as like light, then transport straight in a medium, refract at the interface where the carrier type is changed, and also can interact with other coherent electron waves. We are interested in playing with phase coherent electron waves, and developing a smart design to control electron waves effectively and substantially.

DYNAMICALLY TUNABLE PLASMONICS:

Plasmons are collective charge density oscillations in (conventionally) metals in response to incident electromagnetic field (light). Electrically tunable plasmonics is obviously more favorable then static devices. However, it cannot be easily achieved because most of conventional plasmonic materials are noble metals, of which Fermi energy is barely adjustable. In contrast, Fermi energy and corresponding plasmonic behavior of graphene are tunable using electrostatic gating. Plasmonics using two-dimensional materials (especially graphene) is thus now getting attraction, but not many systems have been suggested nor thoroughly tested. We aim to create new plasmonic heterostructures based on two-dimensional materials, where we can manipulate how much and where to populate electrons, and gain a vast plasmonic tunability.

QUICK
MENU
GIST 대표GIST 대표 GIST PortalGIST Portal 신소재공학부신소재공학부 도서관도서관 증명서 발급증명서 발급